

Potential Campaign Architectures and Mission design challenges for near-term international Mars Sample Return mission concepts

AAS 19-583

29th AAS/AIAA Space Flight Mechanics Meeting January 13-17, 2019 Ka'anapali, Hawaii

Presented by:

Rob Lock
Development Manager, Mars Program Formulation Office
NASA Jet Propulsion Laboratory

Authors:

Robert E. Lock, Austin K. Nicholas, Sanjay Vijendran, Ryan C. Woolley, Alan Didion, Frank Laipert, Zubin Olikara

Introduction

- MSR mission studies have been studied since the Viking landings in 1978
- This presentation introduces the current international MSR study architecture
- Introduces the subjects of the other 5 papers presented at this conference that represent work done for this architecture and study for a potential mission

The MSR coordinated papers

- The JPL MSR study team members have written 6 papers for this conference
- They describe the notional MSR architecture (this one) and take on some of the difficult aspects of MSR, especially those that are new to the architecture, including:
 - Methods for constructing optimal trajectories to and from Mars using electric propulsion and hybrid chemical-electric propulsion trajectories
 - Methods for co-optimizing the S/C design and trajectory necessary for EP missions
 - Methods for constructing an MSR campaign in the face of complex and highly varied constraints and stakeholder concerns
 - New analysis for rendezvous concepts of OS detection and orbit matching

The other topics are:

- Ryan Woolley will discuss Low-Thrust Trajectory Bacon Plots
- Frank Laipert will talk about Hybrid Chemical-Electric Trajectories for a MSR Orbiters
- Eric Gustafson will discuss Mars Orbital Rendezvous Detection Methods
- Zubin Olikara will talk about how we look at Rendezvous Orbit Matching with chemical and electric propulsion
- Austin Nicholas will talk about both the simultaneous optimization of S/C and trajectories using Solar Electric Propulsion as well as the mission analysis for our MSR Campaign concepts

MSR Background

- Post-Viking Science community stresses Mars in-situ and sample return goals and priorities
- Sally Ride Report calls for Mars Sample Return in the late 1980s.
 - Mars Rover Sample Return pre-project begun
- International Partnerships stressed in the late 1990s
 - MSR project begun with CNES partnership in 1997
- NASA/ESA partnership studies begin in the late 2000s
 - ExoMars partnership was first collaboration
- Discussions of partnerships leading to the current study started in 2017
 - Current partnership Statement of Intent, April 2018

20 years of Experience

- Mars Express
- Venus Express
- Smart-1
- Rosetta
- BepiColombo
- ATV

- MRO
- Dawn
- Phoenix
- MSL
- MAVEN
- InSight

Notional MSR Campaign – Functional Objectives

- Acquire and return to Earth a scientifically selected set of Mars samples for investigation in terrestrial laboratories
- Select samples based on their **geologic diversity**, astrobiological relevance, and geochronologic significance
- Establish the field context for each sample using in situ observations
- Ensure the **scientific integrity** of the returned samples through contamination control (including round-trip Earth contamination and sample-to-sample cross-contamination) and control of environments experienced by the samples after acquisition
- **Ensure compliance with planetary protection requirements** associated with the return of Mars samples to Earth's biosphere
- Achieve a set of **sample-related scientific objectives**
 - Life
 Geochronology
 - Planetary-scale geology
 Environmental hazards
- Volatiles
 - ISRU

Notional MSR Campaign Architecture

esa

Notional MSR Mission Scenario and Roles

Lander Concepts Options Under Study (1/2)

Mission Objectives:

- Land on Mars
- Deploy the Sample Fetch Rover
- Maintain the lander and MAV within safe operating conditions
- Once the SFR returns with the tubes, SRL must:
 - Transfer tubes to the OS in the MPA, using the STA
 - Assemble the MPA to the MAV
 - Prepare the MAV for launch (heat and erect)
 - Launch the MAV
- Most of Entry, Descent and Landing is common to both options and based on Mars Science Laboratory

Lander Concepts Options Under Study (2/2)

Key Study Elements

- Accommodation of MAV (400 kg) and Fetch Rover (120 kg) on lander in aeroshell, with volume and mass margins
- Solar power and thermal design for worst case environments
- MAV propulsion technology, performance (including mass), and reliability
- OS: Tube accommodation, insertion into MAV
- Planetary protection design and implementation strategies

Propulsive Platform Lander

Skycrane Delivered Lander

Fetch Rover Concept

Mission Objectives

 Acquire sample tubes cached by M2020 and deliver them to the SRI

Key Specifications (based on NASA conceptual design)

- Rover Mass: 120 kg (Not to Exceed)

Egress Mass: 25 kg (Not to Exceed)

Stowed Volume: ~1 m³

ESA Implementation

- Two parallel competitive contracts: Thales Alenia
 Space, Italy and Airbus Defence and Space, UK
- ExoMars 2020 heritage: triple bogie, six wheel approach
- Technology development: Mars Robotic Exploration Program (MREP) for GNC, miniaturised avionics, as well as low temperature mechanisms and batteries.

Current NASA Fetch Rover Concept

Scale is roughly 2/3 of MER

11

ERO Mission Concept Profile

